
All processes are made to share two portions of memory:-

Memory Operations Log

Path storage
(Ctrie storing the paths)

int readingThreadCount;

P1 P3P2

readingThreadCount
detects number of
threads reading
memoryAvailable is
used before mapping
the shared memory to
get the size which has
to be mapped.

If isExpanding is true,
all processes have to
loop until it is false
before mmap.

Memory
Expander
Process

int writingThreadCount;

int memoryAvailable;

bool isExpanding;

P1

P3

P2

Lock Free?

The two operations that can be carried out on path storage
are:

• Read
• Write

Read Operation

P1

P3

P2

Lock Free?

To read the path storage, the thread needs to mmap
memory first. It is allowed to mmap the shared memory iff
isExpanding is false. If it is true, it keeps looping until it
becomes false.

It maps the shared memory in PROT_READ as per the
memoryAvailable variable.

If a thread wants to read the path storage, it first increments
readingThreadCount by atomic CAS.

When thread is done reading, it decrements
readingThreadCount* by atomic CAS.

*A local variable isReading resides in every thread local storage which is

set as true whenever thread starts reading.

If the thread gets killed in middle of reading, a signal handler would

check value of isReading and if it is true, it will decrement

readingThreadCount.

Write Operation

P1

P3

P2

Lock Free?

To write data to the path storage, the thread needs to mmap
memory first. It is allowed to mmap the shared memory iff
isExpanding is false. If it is true, it keeps looping until it
becomes false.

It maps the shared memory in PROT_WRITE as per the
memoryAvailable variable.

If a thread wants to write the path storage, it first increments
writingThreadCount by atomic CAS.

When thread is done reading, it decrements
writingThreadCount by atomic CAS.

*A local variable isWriting resides in every thread local storage which is

set as true whenever thread starts writing.

If the thread gets killed in middle of reading, a signal handler would

check value of isWriting and if it is true, it will decrement

writingThreadCount.

Memory
Expander
Process

This process is created by us by a simple C file which gets
executed just before the software build starts.

It always keeps a temporary file open with ‘X’ memory.

Purpose of this process is to monitor the shared memory. If It
detects the shared memory left to be less than a certain limit, it
sets isExpanding variable true and waits until
readingThreadCount and wirtingThreadCount variable are
found to be 0.

After that it sets the memoryAvailable to a new value
{‘old memory size’ + ‘X’ } and appends the new temporary file
with the main file to which the path data is getting stored.

After this isExpanding is set to false.

It again creates a new temporary file, and continues to check
for limit.

Working Of Memory Expander Process In Steps

