
 

Add support for running 
worker on non-python 
platforms 
March 20, 2020 

 

About Me 
Name​ : Samartha S M 

Email​ : ​samarthamahesh@gmail.com​, ​samartha.s@students.iiit.ac.in 

Github​ : ​https://github.com/samarthamahesh 

Mobile​ : +919535246725 

University​ :  

● Name : International Institute of Information Technology, Hyderabad 

● Major : Computer Science and Engineering (CSE) 

● Joining Year : 2018 

● Expected Graduation Year : 2022 

● Degree : Bachelor of Technology (B. Tech) 

Location/Timezone​ : Hyderabad, India UTC+5:30 

 

 

 

 

mailto:samarthamahesh@gmail.com
mailto:samartha.s@students.iiit.ac.in
https://github.com/samarthamahesh


2  

Project Abstract 
Buildbot is an open-source framework for software build, test and release processes. Basically, 

Buildbot is a job scheduling system, executes jobs when resources are available and reports the 

results to users through different notifiers like Email, Web Status, IRC, Status Client. 

Buildbot installation will have one or more masters and a collection of workers. Master monitors 

for any changes in source code repositories, coordinates activities of workers and reports 

results to users and developers. Workers can run on a variety of operating systems. 

The current version of Buildbot automated build, test, release software is implemented in python 

and twisted and is part of python packages and hence the platforms that support Buildbot are 

limited to those that support python and twisted. But Buildbot users would want to run tests on 

a wide variety of platforms. 

Hence, this project aims at designing a new language-independent protocol and new worker 

implementation in C++ (language with fewer runtime dependencies). C++ is chosen due to its 

ubiquity and mentoring resources. 

Project Goals 
1. Designing / Investigating a language-independent protocol that supports the         

current master-worker communication functionality 
2. Creating a protocol specification 
3. Adapting both worker and master to this new protocol 
4. Implementing a new worker with less dependencies for the protocol in C++ 
5. Documenting and open-sourcing the development process 
6. The new worker is built and tested on weird platforms (stretch goal) 

 

 

 

 



3  

Specifications 
1. Investigating a language-independent protocol that supports the current        

master-worker communication functionality 
● Investigating a language-independent protocol will help us verify complete         

support for communication between master and worker. Choosing any protocol, it           

should support all functionalities of current communication between master and          

worker. 

2. Creating a protocol specification 
● Creating protocol specification to study what kind of messages go between           

master and worker. 

● Studying how the protocol formats and transfers data in the network. 

3. Adapting both worker and master to this new protocol 
● Applying this protocol to Buildbot, so that master and worker communicate in this             

protocol. 

● This is required so that there would be no need to depend on C++ to run tests. 

4. Implementing a new worker with less dependencies for the protocol in C++ 
● As the project aims to make workers runnable on a variety of platforms, including              

those with no support for python libraries, new worker will be implemented in             

C++. 

● C++ is chosen because of its wide support over a variety of platforms including              

embedded platforms. 

5. Documenting and open-sourcing the development process 
● During the entire process, each and every step (no matter how small) will be 

documented for developers as well as for the users. 
6. The new worker is built and tested on weird platforms (stretch goal) 

● After the worker is built on the new protocol chosen, it will be tested on a weird                 

platform to check its working. 

● Continuous Integration will be set up to do testing of workers in weird platforms. 

 

 



4  

Timeline 
 

Date  Activity 

April 1 - April 26  Getting comfortable with the Buildbot’s source code + Getting 
familiar with working of master and workers + Issue solving 

April 27 - May 18 
Community Bonding Period 

Community Bonding + Getting familiar with organization’s workflow 

May 19 - May 26 
Coding Period Starts 

Investigating new protocol which is language-independent + 
Documentation 

May 27 - June 5  Creating protocol specification + Documentation 

June 6 - June 15  Adapting master and worker to this protocol + Documentation 

June 16 - June 19  Phase 1 Evaluation 

June 20 - June 25  Continue work on adapting master and worker to this protocol + 
Documentation 

June 26 - July 7  Start implementing worker in Cpp + Documentation 

July 8 - July 12  Buffer period (If any work is pending, this period will be utilized to 
complete the pending work) 

July 13 - July 17  Phase 2 Evaluation 

July 18 - July 27  Refactoring Code. Testing and Removing bugs (if any) 

July 28 - August 5  Test worker on weird platforms (stretch goal) 

August 6 - August 10  Final documentation + Bug fixing (if any) 

August 10  - August 17  Final Submission and Evaluation 

 

 

 



5  

Benefits to community and users 
If this project is successfully completed, it will enable workers to run on a wide variety of 

platforms with no support to python libraries which will enable users to easily automate their 

build, test and release processes. Community will be able to review the implementation due to 

proper documentation. 

Deliverables 
- Master and worker adapted to new language-independent protocol 

- Worker implemented in C++ 

- Detailed Documentation for the Dev Process 

Future Developments 
- Contribute to BuildBot Community 

- Contribute to MacPorts Community 

I intend to be as open, friendly and communicative as possible, and will develop a bond with the 

community which will most definitely extend even after GSOC ends. I would inform the 

community with new updates regarding my project using mailing lists and my GSoC blog. I also 

request the mentors to test my work on a timely basis, so that we will be on the same page. 

 


