Problem with gcc4.7 and call_once
David Barto
DBarto at visionpro.com
Wed Aug 7 09:09:49 PDT 2013
On Aug 7, 2013, at 8:44 AM, Jeremy Huddleston Sequoia <jeremyhu at apple.com> wrote:
> Can you provide a reproducible test case?
>
Compile line is:
/opt/local/bin/g++-mp-4.7 -std=c++11 -g threading.cpp -o threading
The following is the result of the execution of the code.
Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: 13 at address: 0x0000000000000000
[Switching to process 36254 thread 0x1203]
0x00000001000d1b20 in __once_proxy ()
(gdb)
The code follows.
With the exception of the changes for GCC 4.7 and a 'main' at the end this is the thread library as posted at:
https://github.com/progschj/ThreadPool
I'm using the example code that is specified on the github as the example main here.
threading.cpp
#include <vector>
#include <queue>
#include <memory>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <functional>
#include <stdexcept>
typedef std::thread worker_t;
class ThreadPool {
public:
ThreadPool(size_t threads);
#if (__GNUC__ <= 4) || (__GNUC_MINOR__ < 8)
//
// By default thread pools run at a lower priority
//
template<class T, class F, class... Args>
std::future<T> enqueue(F&& f, Args&&... args);
#else
template<class F, class... Args>
auto enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type>;
#endif
~ThreadPool();
private:
// need to keep track of threads so we can join them
std::vector< worker_t > workers;
// the task queue
std::queue< std::function<void()> > tasks;
// synchronization
std::mutex queue_mutex;
std::condition_variable condition;
bool stop;
};
// the constructor just launches some amount of workers
inline ThreadPool::ThreadPool(size_t threads) : stop(false)
{
for(size_t i = 0;i<threads;++i)
{
workers.emplace_back(
[this]
{
while(true)
{
std::unique_lock<std::mutex> lock(this->queue_mutex);
while(!this->stop && this->tasks.empty())
this->condition.wait(lock);
if(this->stop && this->tasks.empty())
return;
std::function<void()> task(this->tasks.front());
this->tasks.pop();
lock.unlock();
task();
}
}
);
}
}
#if (__GNUC__ <= 4) || (__GNUC_MINOR__ < 8)
template<class T, class F, class... Args>
// coverity[pass_by_value]
inline std::future<T>
ThreadPool::enqueue(F&& f, Args&&... args)
{
//typedef typename std::result_of<F(Args...)>::type return_type;
// don't allow enqueueing after stopping the pool
if(stop)
throw std::runtime_error("enqueue on stopped ThreadPool");
auto task = std::make_shared< std::packaged_task<T()> >(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
std::future<T> res = task->get_future();
{
std::unique_lock<std::mutex> lock(queue_mutex);
tasks.push([task](){ (*task)(); });
}
condition.notify_one();
return res;
}
#else
// add new work item to the pool
template<class F, class... Args>
auto ThreadPool::enqueue(F&& f, Args&&... args)
-> std::future<typename std::result_of<F(Args...)>::type>
{
typedef typename std::result_of<F(Args...)>::type return_type;
// don't allow enqueueing after stopping the pool
if(stop)
throw std::runtime_error("enqueue on stopped ThreadPool");
auto task = std::make_shared< std::packaged_task<return_type()> >(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
);
std::future<return_type> res = task->get_future();
{
std::unique_lock<std::mutex> lock(queue_mutex);
tasks.push([task](){ (*task)(); });
}
condition.notify_one();
return res;
}
#endif
// the destructor joins all threads
inline ThreadPool::~ThreadPool()
{
{
std::unique_lock<std::mutex> lock(queue_mutex);
stop = true;
}
condition.notify_all();
for(size_t i = 0;i<workers.size();++i)
{
workers[i].join();
}
}
#include <iostream>
int
main(int argc, char *argv[])
{
// create thread pool with 4 worker threads
ThreadPool pool(4);
// enqueue and store future
auto result = pool.enqueue<int>([](int answer) { return answer; }, 42);
// get result from future
std::cout << result.get() << std::endl;
}
More information about the macports-users
mailing list